c-Rel, an NF-kappaB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation.

نویسندگان

  • Hyung Jin Ahn
  • Caterina M Hernandez
  • Jonathan M Levenson
  • Farah D Lubin
  • Hsiou-Chi Liou
  • J David Sweatt
چکیده

Transcription is a critical component for consolidation of long-term memory. However, relatively few transcriptional mechanisms have been identified for the regulation of gene expression in memory formation. In the current study, we investigated the activity of one specific member of the NF-kappaB transcription factor family, c-Rel, during memory consolidation. We found that contextual fear conditioning elicited a time-dependent increase in nuclear c-Rel levels in area CA1 and DG of hippocampus. These results suggest that c-rel is active in regulating transcription during memory consolidation. To identify the functional role of c-Rel in memory formation, we characterized c-rel(-/-) mice in several behavioral tasks. c-rel(-/-) mice displayed significant deficits in freezing behavior 24 h after training for contextual fear conditioning but showed normal freezing behavior in cued fear conditioning and in short-term contextual fear conditioning. In a novel object recognition test, wild-type littermate mice exhibited a significant preference for a novel object, but c-rel(-/-) mice did not. These results indicate that c-rel(-/-) mice have impaired hippocampus-dependent memory formation. To investigate the role of c-Rel in long-term synaptic plasticity, baseline synaptic transmission and long-term potentiation (LTP) at Schaffer collateral synapses in c-rel(-/-) mice was assessed. c-rel(-/-) slices had normal baseline synaptic transmission but exhibited significantly less LTP than did wild-type littermate slices. Together, our results demonstrate that c-Rel is necessary for long-term synaptic potentiation in vitro and hippocampus-dependent memory formation in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NF-kappaB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity.

Changes in synaptic plasticity required for memory formation are dynamically regulated through opposing excitatory and inhibitory neurotransmissions. To explore the potential contribution of NF-kappaB/Rel to these processes, we generated transgenic mice conditionally expressing a potent NF-kappaB/Rel inhibitor termed IkappaBalpha superrepressor (IkappaBalpha-SR). Using the prion promoter-enhanc...

متن کامل

Astroglial nuclear factor-kappaB regulates learning and memory and synaptic plasticity in female mice.

Astrocytes play a pivotal role in regulating synaptic plasticity and synapse formation. The nuclear factor-kappa B (NF-kappaB) family of transcription factors has recently been demonstrated to be an important modulator of synaptic plasticity and learning/memory. In this study, we investigated the role of astroglial NF-kappaB in synaptic plasticity and learning/memory using transgenic mice over-...

متن کامل

NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling.

Synaptic activity-dependent de novo gene transcription is crucial for long-lasting neuronal plasticity and long-term memory. In a forebrain neuronal conditional NF-kappaB-deficient mouse model, we demonstrate here that the transcription factor NF-kappaB regulates spatial memory formation, synaptic transmission, and plasticity. Gene profiling experiments and analysis of regulatory regions identi...

متن کامل

NF-kappaB activity in distinct neural subtypes of the rat hippocampus: Influence of time and GABA antagonism in acute slice preparations.

Hippocampal memory-associated synaptic plasticity is driven by a cascade of transcription and new protein synthesis. In vitro electrophysiological studies on acute hippocampal slices have elucidated much of what we know about this molecular cascade. Curiously, these slices require a period of "equilibration" for the recovery of electrophysiological properties such as LTP, implying ongoing time-...

متن کامل

Transcription Factor NF-κB Is Transported to the Nucleus via Cytoplasmic Dynein/Dynactin Motor Complex in Hippocampal Neurons

BACKGROUND Long-term changes in synaptic plasticity require gene transcription, indicating that signals generated at the synapse must be transported to the nucleus. Synaptic activation of hippocampal neurons is known to trigger retrograde transport of transcription factor NF-kappaB. Transcription factors of the NF-kappaB family are widely expressed in the nervous system and regulate expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Learning & memory

دوره 15 7  شماره 

صفحات  -

تاریخ انتشار 2008